Split Sample Bootstrap Method

نویسندگان

  • Alamgir
  • Salahuddin
  • Amjad Ali
چکیده

The bootstrap technology introduced by [1] has wide applications, particularly, in regression analysis. It has been used by researchers to construct empirical distributions for estimates of the regression coefficients. In case of outliers in the data, the classical bootstrap procedure fails to give us fine results even if robust regression estimates are used. In this paper we introduced a new bootstrap procedure, called “split sample bootstrap” to handle outliers. The proposed bootstrap procedure gives bootstrap estimates having smaller bootstrap estimates of the standard errors and as a result, we get narrow confidence intervals of the estimates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Events per variable (EPV) and the relative performance of different strategies for estimating the out-of-sample validity of logistic regression models

We conducted an extensive set of empirical analyses to examine the effect of the number of events per variable (EPV) on the relative performance of three different methods for assessing the predictive accuracy of a logistic regression model: apparent performance in the analysis sample, split-sample validation, and optimism correction using bootstrap methods. Using a single dataset of patients h...

متن کامل

Multi-Source Multi-Sensor Image Fusion Based on Bootstrap Approach and SEM Algorithm

Bootstrap approach and Stochastic EM algorithm combination applied for the improvement of the multisource and multi-sensor image fusion process; was presented in this research. Improvement concerned not only image quality and reducing processing execution time as mentioned in our previous Bootstrap EM algorithm (BEM), but also regarding initialization dependence as well as fixed classes’ number...

متن کامل

Optimum Block Size in Separate Block Bootstrap to Estimate the Variance of Sample Mean for Lattice Data

The statistical analysis of spatial data is usually done under Gaussian assumption for the underlying random field model. When this assumption is not satisfied, block bootstrap methods can be used to analyze spatial data. One of the crucial problems in this setting is specifying the block sizes. In this paper, we present asymptotic optimal block size for separate block bootstrap to estimate the...

متن کامل

Forecasting with Model Uncertainty: Representations and Risk Reduction∗

We consider forecasting with uncertainty about the choice of predictor variables. The researcher wants to select a model, estimate the parameters, and use this for forecasting. We investigate the distributional properties of a number of different schemes for model choice and parameter estimation: in-sample model selection using the Akaike information criterion, out-of-sample model selection, an...

متن کامل

Bootstrap and MLS methods-based individual bioequivalence assessment

It is a one-sided hypothesis testing process for assessing bioequivalence. Bootstrap and modified large-sample(MLS) methods are considered to study individual bioequivalence(IBE), type I error and power of hypothesis tests are simulated and compared with FDA(2001). The results show that modified large-sample method is equivalent to the method of FDA(2001) . Keywords—individual bioequivalence; b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013